

Discovery...

e 716, liste 1, 17 September 2012

a property the second of the

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsHIG/HZZ4l_date_animated_gif

LHC Operation

- Incredible 3 years of LHC operation, continuously beating luminosity records, L_{int} ~30/fb delivered
- Providing increasing fraction of data used for physics

CMS detector operation

Excellent performance of subdetectors during the 3 years
 Despite the hostile conditions of nominal pile up rate reached

CMS Status in Feb 2013 (%)

CMS Average Pileup, pp, 2012, vs = 8 TeV

CMS data collected in 2012

Data included from 2012-04-04 22:37 to 2012-12-16 20:49 UTC 25 25 Moriond/EPS LHC Delivered: 23.30 fb⁻¹ Total Integrated Luminosity ($m fb^{-1}$ Recorded: 21.79 fb⁻¹ CMS Validated: 20.65 fb⁻¹ 20 20 CMS Preliminary HCP 15 15 10 10 **ICHEP** 5 1 Jun 2 Dec 2 May 2 141 1 AUG 2 Sep 2000 1 NON Date (UTC) Total certified good data set 5.32 fb⁻¹ @ $\sqrt{s} = 7$ TeV 20.65 fb⁻¹ @ $\sqrt{s} = 8$ TeV ~88% of delivered luminosity

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

Particle Flow reconstruction tecniques Reconstruct all particles in detector volume Combine info from subdetectors s=7 TeV CMS Simulation Drastic improvement 0.3 of detector resolution! $\sigma(p_{\gamma}/p_{T}^{REF}) / < p_{\gamma}/p_{T}^{REF} >$ Calorimeter-Jets 0.2 Jets from Particles =Particle-Flow) 0.1 (point-fit) point [%] 10 20 30 100 200 2000 [GgV]

Precise SM measurements

Boson production

Good understanding of the detector + accurate theory predictions

Precise measurements of the SM processes over many orders of magnitude

Good knowledge of the background to Higgs analyses

Top mass

CMS TOP-13-002

Important to measure top mass accurately, reducing uncertainties (also theoretical)

CMS Preliminary, 1s = 7 and 8 TeV

Good understanding of the detector + accurate theory predictions

Precise measurements of the SM processes over many orders of magnitude

Good knowledge of the background to Higgs analyses

- Quest for many years to find a deviation of the SM prediction is coming to an end
- Evidence (and measurement) of decay, consistent with SM
- No sign of new physics on this front

Higgs story

Standard Model Higgs Production

Important input provided by LHC Higgs Working Group :

• Theory predictions and their uncertainties

Standard Model Higgs Decay

Signatures explored at CMS

Prod	lucti	ion	ΛЛ	od	Δς
1100	ucu			u	CS

	incl. (ggH)	VBF tag	VH tags	ttH tag
bb		 Image: A set of the set of the	~	~
ττ	~	 Image: A set of the set of the	~	~
WW	~	✓	🖌 (3ℓ, Vjj)	~
ZZ	~	 Image: A set of the set of the		~
γγ	~	 Image: A start of the start of	✓	~
Zγ	~	 Image: A start of the start of		
μμ	~	 Image: A start of the start of		
invis.		 Image: A set of the set of the	~	

= full 8 TeV dataset analyzed, often full 7 TeV too.

Decay Modes

Higgs Couplings to Vector Bosons

Indications of role in EWK Symmetry breaking

Search for a narrow mass peak with 2 isolated, very energetic photons on a smoothly falling background

□ Excellent resolution measuring photon energy → 1% precision in $m_{\gamma\gamma}$ (in barrel)

 $m_H = 125.4 \pm 0.5(stat.) \pm 0.6(sys.)GeV$

- Categories by S/B, resolution and pT
- Dijet (VBF) categories with ~70% purity

Mass fit with polynomial background chosen to minimize the bias on signal

Signal Strength

CMS HIG-13-001

Significance: 3.2σ (4.2 σ expected)

 $H \rightarrow ZZ^* \rightarrow 4I$ (I=e,µ)

e

$ZZ \rightarrow ee\mu\mu$ candidate

 $H \rightarrow ZZ^* \rightarrow 4$

Clean experimental signal

- 4 energetic and isolated leptons (e / μ)
- Coming from same primary interaction vertex
- Consistent from originating from Z boson

- Very tiny cross section, but low background level
- Require high selection and lepton id efficiencies

■Narrow peak (resolution 1-2 GeV) in m₄₁ mass distribution.

ZZ decays into 4l (l=e,µ)

 $H \rightarrow ZZ^* \rightarrow 4$

Compatibility with background only hypothesis

Gain in sensitivity using Matrix Element Likelihood Analysis

Kinematic Discriminant

Kinematic Discriminant

 $H \rightarrow WW^* \rightarrow |v|v$

CMS Experiment at LHC, CERN Data recorded: Thu Apr 19 09:14:14 2012 CEST Run/Event: 191721 / 76089774 Lumi section: 111 Orbit/Crossing: 28960009 / 815

Signature

- 2 High p_t isolated leptons
- Large momentum imbalance in evt (neutrinos)

* H→W

- High sensitivity channel
- No mass peak reconstructed
- Analysis optimized depending on m_H hypothesis

 $p_{TI}, m_{II}, m_{T}, \Delta \phi$

Categories according to jet multiplicities 0,1,2 (VBF) and SF/DF lepton flavours

Vectors from the decay of a scalar and V-A structure of W decay lead to small leptons opening angle (especially true for onshell Ws)

Broad enhancement seen compared to backgd only hypothesis, consistent with SM Higss @4 σ (5.1 σ expected)

Significance: 4.0σ (5.1 σ expected)

$H \rightarrow WW (VBF)$

CMS HIG-13-022

- VBF production enhanced requiring 2 jets in forward direction, high pT, well separated in pseudorapidity
- Additional value \rightarrow test of vector bosons scattering

$VH, H \rightarrow WW^* \& V \rightarrow jj$

Interesting test of production of ggH vs VH

- M_{jj} compatible with coming from W or Z (65 < m_{jj} < 105 GeV)

CMS HIG-13-017

Higgs Couplings to Fermions

Indications of mass generation in fermion sector

 $H \rightarrow \tau \tau$

Number of jets categories
o jets: only to constrain the background
1 jet: low / high pT
2 jets : VBF process

VH production: $|\tau_h \tau_h$, $||\tau_h \tau_h$, $||\tau_h$

 τ reconstruction is very challenging

Η→ττ

CMS HIG-13-004

A 2.9 σ signal at m_H = 125 GeV is emerging (expected 2.6 σ)

Η→ττ

CMS HIG-13-004

hypothesis for a $m_{H} = 125 \text{ GeV}$

 $\sigma/\sigma_{SM} = 1.1 \pm 0.4$

H→bb (VH)

- If SM Higgs → bb has the highest BR
- But very high levels of backgrounds looking for b-pairs alone.
- Look for Associated Production with a Vector Boson (W,Z)

CMS HIG-13-012

- Gluon-gluon fusion signal overwhelmed by QCD
- Associated production with W(lv), Z(ll, vv)is probed
- Observe a broad excess compatible with signal

$H \rightarrow bb (VBF)$

CMS HIG-13-011

m_µ [GeV]

Vector Boson fusion production with 2 tagged forward jets 2 b-jets in central rapidity region W. H Special trigger developped 14 W. 95% Asymptotic CL Limit on σ / $\sigma_{
m SM}$ CL_s Observed CMS Preliminary — - CL, Expected √s = 8 TeV 12 | ---- CL H125 Injected L = 19.0 fb⁻¹ CMS Preliminary $\sqrt{s} = 8 \text{ TeV} \text{ L} = 19.0 \text{ fb}^{-1}$ CL Expected ± 1σ VBF $H \rightarrow b\overline{b}$ 10 Events / 2.5 GeV CL, Expected ± 2 σ CAT4 200 Data 8 Background-only Fit Fit±1σ 150 6 Fit±2σ Signal (125 GeV) × 10 100 2 50 0 120 125 115 130 135 Higgs Mass (GeV) 50 VH + VBF Data-Fit -ocal p-value CMS Preliminary 101 -50 220 240 80 100 160 180 200 M_{bb} (GeV) 10⁻² M_{bb} for the most sensitive category 10⁻³ s = 7 TeV. L = 5.0 fb⁻¹ s = 8 TeV, L = 19.0 fb⁻¹ 10-4 VH(bb) + VBFH(bb) combined 3.4 σ evidence of Higgs to fermion coupling, 10⁻⁵ combining $H \rightarrow bb \& H \rightarrow \tau \tau$ channels oled from Still Hauss DEV Celly 10⁻⁶ 110 125 115 120 13037 135

Higgs Properties CMS HIG-13-005

Decay mode	Expected (σ)	Observed (σ)
ZZ	7.1	6.7
$\gamma\gamma$	3.9	3.2
WW	5.3	3.9
bb	2.2	2.0
ττ	2.6	2.8

Mass

 \Box Signal strength (μ)

$$\iota = \frac{\sigma \cdot \mathrm{BR}}{\left(\sigma \cdot \mathrm{BR}\right)_{\mathrm{SM}}}$$

Couplings

Spin-parity

Last combination performed with Moriond'13 dataset, around spring 2013,

Higgs mass

CMS HIG-13-005

Higgs mas determination driven by the channels with better momentum precision: H $\rightarrow\gamma\gamma$ and H \rightarrow ZZ \rightarrow 4l

- CMS γγ 125.4±0.5±0.6 GeV
- CMS ZZ→4l 125.8±0.5±0.2 GeV
- CMS comb. 125.7±0.3±0.3 GeV = 125.7±0.4 GeV

 $H \rightarrow ZZ \rightarrow 4l$: small systematics due to good control of lepton scale and resolution.

 $H \rightarrow \gamma \gamma$: systematic on extrapolation from Z \rightarrow ee to $H \rightarrow \gamma \gamma$ (0.25% from e to γ , 0.4% from Z \rightarrow H).

Higgs mass

 $H \rightarrow WW$

Mass: all $\tau\tau$ channels combined: m_H = 120⁺⁹-7 (stat+syst) GeV

SM Higgs Signal Strength: Consistency

• Theory uncertainty (QCD scale $\pm 8\%$ @NNLO and PDF+ $\alpha_s \pm 8\%$) is comparable to experimental. • 41

SM Higgs Signal Strength: Consistency

Theory uncertainty (QCD scale ±8%@NNLO and PDF+α_s ±8%) is comparable to experimental.

•43

(Deviations of) Couplings

Event yield in any final state, related to (at LO in EWK & NLO QCD)

$\sigma(H) \ge BR(ii \rightarrow H \rightarrow xx) = \sigma_{ii} \ge \Gamma_{xx} / \Gamma_{H}$

- Measure deviations from SM couplings by measuring ratios w.r.t. SM cross sections and partial widths predictions
- Introduce set of parameters
- **Example:** $gg \rightarrow H \rightarrow \gamma\gamma$ process

$(\sigma \times BR) (gg \rightarrow H \rightarrow \gamma\gamma) = \sigma_{SM}(gg \rightarrow H) BR(H \rightarrow \gamma\gamma) \bullet \kappa_g^2 \kappa_{\gamma}^2 / \kappa_H^2$

LHC XS WG benchmark models (arXiv:1209.0040):

- Fermionic vs Bosonic couplings: k_v, k_f
- Search for asymmetries: λ_{WZ} , λ_{du} , λ_{lq}
- Search for new physics in loops: k_g , k_{γ} , BR_{BSM}

Simultaneous fit of all couplings (also fixing some of them)

Fermionic vs Bosonic Coupling

Assume all fermion couplings scale with k_f , while all vector boson couplings scale as k_V

Custodial Symmetry

- SM predict very similar higgs couplings to W and Z bosons → Test HWW (k_w) & HZZ (k_z) couplings, through λ_{wz} = k_w / k_z
- □ If new physics exist, violations of custodial symmetry are possible

Fermion Universality

- Test Up- vs Down-type fermion couplings & lepton vs quarks couplings
- Motivated by 2HDM models, where these couplings can be modified (decoupled from boson couplings)

lepton vs quarks couplings $\lambda_{lq} := \kappa_l / \kappa_q$, coupling to τ[0.89,1.62] @ 68% CL
[0.57,2.05] @ 95% CLDriven by $\mu_{\tau\tau}$, larger than averageUp- vs Down-type fermion $\lambda_{du} := \kappa_d / \kappa_u$, Coupling to b and τ[1.00,1.60] @ 68% CL
[0.74,1.95] @ 95% CLDriven by low VV, $\gamma\gamma$ yields, compared to bb, $\tau\tau$

Searches for new physics (BR_{BSM})

Extra particles in loops or decays can generate deviations in couplings

Effective couplings to gluons & photons

 $\Gamma_{\rm BSM}$ = 0

Loop-induced couplings free (k γ , kg profiled) Allowed for extra particles in loops Not using direct search for H \rightarrow invisible \bullet 48

Summary of coupling results

Coupling vs mass

Expressing Higgs couplings as a function of mass

Spin

- Spin o is required if SM Higgs
- Spin 1 is excluded by $H \rightarrow \gamma \gamma$ decay (Landau-Yang theorem)
- Spin 2 induced by KK-graviton couplings

Parity:

- SM CP-even Higgs
- BSM CP-odd HIggs

Exploit kinematical variables distributed differently for one or other hypothesis of J^P

Using mainly ZZ \rightarrow 4l, but also H \rightarrow WW and H $\rightarrow\gamma\gamma$ data samples

Several alternative models tested: 0^- , 0^+_h , 1^+ , 1^- , $2^+_m(gg)$, $2^+_m(qq)$

State $J^P = 0^+$ preferred.

Spin

Exploit kinematical variables distributed differently for one or other hypothesis of J^P

Spin from $H \rightarrow \gamma \gamma$

CMS HIG-13-016

- Spin 0⁺ or 2⁺_m (graviton-like) (from gg or qq interactions) tested
- Decay angle $\cos\theta^*$ in diphoton rest frame

Other channels

Search for high mass Higgs

Models predict Higgs doublets (2HDM) or other Higgs-like resonances at higher mass (EWK singlets).

CMS HIG-12-024,

13-014

- Use SM Higgs as a benchmark (similar gg/qq contributions to total production)
- Scan different relative widths and BR
- ZZ and WW decay modes dominant at high mass

Couplings to top quark, ttH (CMS HIG-13-019, 020, 015)

Important to measure ttH coupling, any special role in EWKSB due to top mass? Combination of several decay channels analysed \Box tt \rightarrow W bWb \rightarrow Iv b qq'b (I+jets), IvIv bb (dilepton) \Box H \rightarrow bb, $\tau_{h}\tau_{h}$, $\gamma\gamma$, ZZ^{*},WW^{*} (into leptons)

Already at SM sensitivity on $\mu(ttH)!!$ (was 2.6xSM at Moriond'13) Run2 data needed to asses accurately the nature of the coupling ttH

• 56

Not yet sensitive at SM level

- Search motivated by potential new physics contribution (loops of heavy charged particles)
- Includes VBF process (increases 15% in sensitivity)

H to invisible (VH & VBF)

- In SM, $H \rightarrow inv$ proceeds through $H \rightarrow ZZ \rightarrow 4v$ (BR ~0.1%)
- Possible sign of new physics, like
 - H decays to LSP (
 relation with DM), or
 - decay particles into extra-dimensions (undetected decay mode).

Studied

- Higgs \rightarrow inv recoiling against a visible system (Z \rightarrow II, bb)
- Higgs \rightarrow inv from VBF, accompanied by 2 jets with large rapidity gap and invariant mass and high MET.

```
Combining ZH(Z \rightarrow II) and VBF,
95% upper limit on BR(H \rightarrow inv)
Observed: 54%
Expected: 46%
```

To be included in couplings fit, assuming $BR_{BSM} = BR(H \rightarrow inv)$ Next combination with $H \rightarrow inv, Z \rightarrow bb$

New

CMS HIG-13-018, 013, 028

$H \rightarrow \mu \mu$

- $\hfill\square$ Search for $H{\rightarrow}\mu\mu$ in the context of SM Higgs and MSSM
- Interesting measurement 2nd generation fermion-Higgs coupling, g_μ
- Extremely small BR (~2.2 x 10-4)
- Inclusive (ggF) and VBF
- □ Results: ~4xSM sensitivity on $\mu = \sigma/\sigma_{SM}$

□ In the future, test Hcc couplings measuring $H \rightarrow J/\psi\gamma$ (BR ~10⁻⁶) once probed excellent CMS reconstruction of quarkonia.

So, where are we today?

The boson found at 125 GeV looks rather "standard" scalar from all checks done up to now -> SM Higgs boson

That brings implications on which kind of vacuum we live in

Check vacuum stability up to Planck
 scale M_{Pl}~10¹⁹ GeV

■ Values of m_H and m_T seem to indicate we are in a highly fine-tuned situation of stability/metastability → important to measure this masses with high precision!

Look for BSM Physics

- Dark Matter
- Search for SUSY
- Other Exotica
- Neutrino mass

Ellis et al. Phys Lett B679 (2009) 369.

SUSY Higgs sector

- Simple extention: Two Higgs-doublet model (2HDM) (7 free parameters)
- Types distinguished based on how they couple to fermions.
 - Type I 2HDM, only one doublet couples to fermions.
- Type II 2HDM, a symmetry is imposed so that one doublet couples to uptype fermions and the other couples to down-type fermions.
 - Type III and IV couplings to leptons and quark-types differ.
- Two neutral CP-even (h, H), one neutral CP-odd (A) and charged CP-even (H+, H-).

In MSSM (Minimal Supersymmetric Model) 2 scalars Higgs doublets, Hu, Hd

5 physical scalars

- 3 neutral
 - $\Phi = h, H(CP even)/A(CP odd)$
- 2 charged (H[±])
- Determined by two parameters at tree level

•
$$tan\beta = /$$

- ► M_A
- h boson
 - behavior as the SM Higgs boson

SUSY Higgs sector

No evidence of a BSM Higgs boson

Limits have been set on the MSSM parameters

SUSY Summary

Up to now, no sign of SUSY!

Only a selection of available mass inn

Probe "up to" the quoted mass limit

Dark Matter?

- Dark Matter existence is well established based on gravitational effects
 - Neutral and stable massive particle
 - No SM candidate, but can interact with SM particles
- LHC can provide alternative, complementary way to search for DM
- Direct detection (DM-nucleon scattering)
- Indirect detection (DM annihilation)

Undetectable (as neutrinos)

Signature: monophoton/monojet + MET

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

Dark Matter?

In effective theory, mediator M can be

- Vector mediator → spin dependent
- Axial-vector mediator

 spin independent

No excess of data over SM prediction -> limits on DM production cross section

Seaches for Exotica

- 66

Summary/Outlook

- CMS is carrying a whole program of precision measurements and searches, yielding a major discovery.
- Properties of the Higgs bosons discovered already being established
 SM Higgs boson

rare decays channels, couplings: need Run2 data (~100 fb⁻¹, ~2016)

- Higgs self-coupling will require longer, O(1ab⁻¹) at HL-LHC
- LHC is currently taking a short break, till 2015, to come back at ~13 TeV
- Already looking forward for what the 13-TeV-LHC will bring us!

Backup

Spin from H→WW

Kinematical variables sensitive to $J^{P}: \Delta \phi_{ll}, M_{ll}, m_{T} \dots$

Make use of spin correlation in $H \rightarrow WW^* \rightarrow lvlv$ decay.

